7^2+13^2=c^2

Simple and best practice solution for 7^2+13^2=c^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7^2+13^2=c^2 equation:



7^2+13^2=c^2
We move all terms to the left:
7^2+13^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+218=0
a = -1; b = 0; c = +218;
Δ = b2-4ac
Δ = 02-4·(-1)·218
Δ = 872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{872}=\sqrt{4*218}=\sqrt{4}*\sqrt{218}=2\sqrt{218}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{218}}{2*-1}=\frac{0-2\sqrt{218}}{-2} =-\frac{2\sqrt{218}}{-2} =-\frac{\sqrt{218}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{218}}{2*-1}=\frac{0+2\sqrt{218}}{-2} =\frac{2\sqrt{218}}{-2} =\frac{\sqrt{218}}{-1} $

See similar equations:

| 1/6(x+4)=1/3(2x+4) | | 0=-2x^2-2x+40 | | 6^4x=1÷1296 | | -y-15=37-63 | | 6=(40/7)+c | | (3x+6)°=24+(2x+18) | | 25=8–4n | | 1/3(6x+9)=x=5 | | 2. 2(a+5)=18 | | d=7C=3.14d | | 120+3x=285-2x | | 2.5x^2-16.4x+26.375=0 | | d(d-11=) | | 10+10−9z=–10−4z | | 2x-9=59 | | x/3-2/3=8 | | 3x=-23-18+41 | | 4x+23=21 | | 10.99x=280+3.99x | | .5x=22.5 | | 2x+1=3x-8+15.9+15.9 | | 5x=10;x | | 9m=6m-3 | | 7.2x=10 | | 4x-44=54-3x | | 3^x=222 | | -15=4w+5 | | 6x=24;x | | -4+y/2=-16 | | 1/13+x=32/3 | | H=-16t^+38.4t+0.96 | | x-7/15=-1 |

Equations solver categories